INDIAN SCHOOL MUSCAT
 FIRST MID TERM EXAMINATION MATHEMATICS

CLASS: IX
24.09.2018

Sub. Code: 041

General Instructions:

1. All questions are compulsory.
2. The question paper consists of $\mathbf{3 0}$ questions divided into four sections A,B,C and D. Section-A comprises of 6 questions of 1 mark each; Section-B comprises of 6 questions of $\mathbf{2}$ marks each; Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of $\mathbf{8}$ questions of $\mathbf{4}$ marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 6 carry one mark each.

1. Is $(7+\sqrt{2})-(4+\sqrt{2})$ a rational or an irrational number.
2. Find the degree of the polynomial $4 x^{4}+0 x^{3}+10 x^{5}+5 x+7$
3. In figure 1, if $A O B$ is a line then find y.

4. In which quadrants the abscissa of a point is negative.
5. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{C}$ and $\mathrm{BC}=3 \mathrm{~cm}$. what is the length of the side AB ? Give reason for your answer.
6. Find the area of an equilateral triangle with side $3 \sqrt{2} \mathrm{~cm}$.

SECTION-B

Question numbers $\mathbf{7}$ to $\mathbf{1 2}$ carry two marks each.
7. Evaluate $\left(\frac{32}{243}\right)^{\frac{4}{5}}$
8. Express $0.4 \overline{7}$ in the $\frac{p}{q}$ form, where p and q are integers and $\mathrm{q} \neq 0$.
9. Using suitable identity, evaluate 101×99
10. If -1 is a zero of a polynomial $\mathrm{p}(\mathrm{x})=\mathrm{a} x^{3}-x^{2}+x+4$. Find the value of ' a '
11. In figure 2, point C lies between two points A and B such that $A C=B C$, then prove that $\mathrm{AC}=\frac{1}{2} A B$

12. Two sides of a triangle are 17 cm and 15 cm and its semi- perimeter is 20 cm . Find the area of this triangle.

SECTION-C

Question numbers $\mathbf{1 3}$ to $\mathbf{2 2}$ carry three marks each.
13. If $\mathrm{a}=9-4 \sqrt{5}$, find the value of $\left(a-\frac{1}{a}\right)^{2}$
14. (a) Represent $\sqrt{5}$ on a number line.

OR
(b) Locate $\sqrt{9.3}$ on the number line.
15. (a) Using suitable identity, evaluate $(-32)^{3}+(18)^{3}+(14)^{3}$

OR
(b) Find the value of $x^{3}-8 y^{3}-36 x y-216$ when $x=2 y+6$.
16. The polynomials $p(x)=4 x^{3}-k x^{2}+5$ and $q(x)=x^{2}+k x-3$ leave the same remainder when divided by $(x-1)$. Find the value of k.
17. In figure 3, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S. If the bisectors of $\angle \mathrm{PQR}$ and \angle PRS meet at point T, then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$

18. In figure 4, we have $\angle \mathrm{ABC}=\angle \mathrm{ACB}$ and $\angle 3=\angle 4$. Show that $\angle 1=\angle 2$. State the Euclid's axiom used here.

19. (a) In figure 5, if $\mathrm{PQ} \| \mathrm{RS}, \angle \mathrm{MXQ}=135^{\circ}$ and $\angle \mathrm{MYR}=40^{\circ}$, find $\angle \mathrm{XMY}$.

OR

(b) If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.
20. Answer the following questions (see fig 6):
(i) write the coordinates of $\mathrm{A}, \mathrm{B} \mathrm{C}$ and F
(ii) the ordinate of the point D
(iii) the abscissa of the point E

21. (a) In figure 7, right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $\mathrm{AB} . \mathrm{C}$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B. Show that:
(i) $\quad \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$

(ii) $\angle \mathrm{DBC}$ is a right angle

OR

(b) In figure 8, an isosceles $\triangle \mathrm{ABC}$ with
$\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ and E are points on BC such that
$B E=C D$ Show that $A D=A E$.

22. In $\triangle \mathrm{PQR}, \mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

SECTION-D

Question numbers $\mathbf{2 3}$ to $\mathbf{3 0}$ carry four marks each.
23. Find the value of a and b if $\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}}=a-b \sqrt{5}$
24. (a) Factorize : $x^{3}-6 x^{2}+3 x+10$
(b) Simplify: $(2 x-5 y)^{3}-(2 x+5 y)^{3}$
25. If $a+b+c=9$ and $a^{2}+b^{2}+c^{2}=1$, then find the value of $a^{3}+b^{3}+c^{3}-3 a b c$.
26. (a) Prove that sum of three angles of a triangle is 180°. Using this result, find the value of x and all the three angles of a triangle, if it is given that three angles of the triangle are $(2 x-7)^{0},(x+25)^{0}$ and $(3 x+12)^{0}$ respectively.

OR

(b) The sides $A B$ and $A C$ of $\triangle A B C$ are produced to points E and D respectively as shown in fig 9 . If bisectors BO and CO of $\angle \mathrm{CBE}$ and $\angle \mathrm{BCD}$ respectively meet at point O , then prove that
$\angle B O C=90^{\circ}-\frac{1}{2} \angle B A C$.

27. Plot the following points in the coordinate plane $\mathrm{A}(-4,4), \mathrm{B}(-6,0), \mathrm{C}(-4,-4)$ and $\mathrm{D}(-2,0)$. Name the figure obtained by joining the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . Also find its area.
28. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of $\triangle \mathrm{PQR}$ as shown in figure 10.Prove that:
(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

29. (a) In figure $11, \mathrm{OA}=\mathrm{OD}$ and $\angle 1=\angle 2$. Prove that $\triangle \mathrm{OCB}$ is an isosceles triangle.

OR
(b) AD is an altitude to side BC of an isosceles $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}$. Show that
(i) AD bisects BC
(ii) AD bisects $\angle \mathrm{A}$.
30. Two parallel sides of a trapezium are 120 cm and 154 cm and the other non- parallel sides are 50 cm and 52 cm . find the area of the trapezium.

End of the Question Paper

